【SEOテキスト】宇田雄一「古典物理学」慣性運動(特殊相対論的)∀n∈N;∀f∈F4,n;∀m∈R(2×{1,・・・,n});【1】⇒[【2】⇔【3】]【1】∀k∈{1,・・・,n};m(1,k)≠0and
m(2,k)f(N3)=0【2】∃a,b∈R(3×{1,・・・,n});∀k∈{1,・・・,n};【2a】and【2b】【2a】|a(□,k)|<1【2b】∀(t,i)∈N1;f(t,i,k)=a(i,k)t(4)+b(i,k)【3】∀(t,i,k)∈N2,n;e5(t,i,k;f(N2,n),f(N3),m)=0一定一様電磁場中の荷電質点(特殊相対論的)・・・・・・112ページから116ページまで∀f∈F4,1;∀m∈R(2×1);[【1】or【2】]⇒【3】【1】∃E,H∈R;∃a∈R({2,3});∃α,β,b,c∈R;【1a】and【1b】and[【1c1】or【1c2】or【1c3】or【1c4】or【1c5】]【1a】m(1,1)>0and
m(2,1)>0and E>0and H>0andα=E2-H2andβ=bH2-a(3)EH and c=-2bβ-b2αand
b=√[a(2)]2+[a(3)]2+[m(1,1)/m(2,1)]2【1b】∀ξ∈N01;f(ξ,1,1)=E and f(ξ,2,2)=H
and f(ξ,2,1)=f(ξ,3,1)=f(ξ,1,2)=f(ξ,3,2)=0【2】∃E,H∈R;∃a∈R({2,3});∃b∈R;【2a】and【2b】and[【2c1】or【2c2】]【2a】m(1,1)>0and
m(2,1)>0and b=√[a(2)]2+[a(3)]2+[m(1,1)/m(2,1)]2【2b】∀ξ∈N01;f(ξ,1,1)=E
and f(ξ,2,2)=H and f(ξ,2,1)=f(ξ,3,1)=f(ξ,1,2)=f(ξ,3,2)=0【3】∀(t,i,k)∈N2,1;e5(t,i,k;f(N2,1),f(N3),m)=0
|