【SEOテキスト】宇田雄一「古典物理学」【1d1】とは【1d1a】and【1d1b】のことだ。【1d1a】Qm(2,1)<-Z0-am(1,1)【1d1b】∃t0∈R;∃θ0∈R(Z);【1d1b1】and[∀t∈R;∀n∈Z;-t0≦t-2nt0≦0⇒【1d1b2】]and[∀t∈R;∀n∈Z;0≦t-2nt0≦t0⇒【1d1b3】]【1d1b1】t0=√α'/-αE+β/α√αcosh-1(-αβ'/A/√β2-αc)and
θ0(0)=0【1d1b2】∃z∈R;z=r(t)-Qm(2,1)/E and t=2nt0-1/α√αz2+2βz+c-β/α√αcosh-1(-αz-β/√β2-αc)and
θ(t)=θ0(n)-h/√α'cosh-1(α'/r(t)+β'/√β'2-α'A)【1d1b3】∃z∈R;z=r(t)-Qm(2,1)/E
and t=2nt0+1/α√αz2+2βz+c+β/α√αcosh-1(-αz-β/√β2-αc)and θ(t)=θ0(n)+h/√α'cosh-1(α'/r(t)+β'/√β'2-α'A)【1d2】とは【1d2a】and【1d2b】のことだ。【1d2a】Qm(2,1)=-Z0-am(1,1)【1d2b】∃t0∈R;∃θ0∈R(Z);【1d2b1】and[∀t∈R;∀n∈Z;-t0≦t-2nt0≦0⇒【1d2b2】]and[∀t∈R;∀n∈Z;0≦t-2nt0≦t0⇒【1d2b3】]【1d2b1】t0=√α'/6β2E(α'/E2-3c)and
θ0(0)=0【1d2b2】∃z∈R;z=r(t)-Qm(2,1)/E and t=2nt0-1/3β2(βz-c)√2βz+c
and θ(t)=θ0(n)-h/√α'cosh-1(α'/r(t)+β'/√β'2-α'A)
|