【SEOテキスト】宇田雄一「古典物理学」【1d2b3】∃z∈R;z=r(t)-Qm(2,1)/E and
t=2nt0+1/3β2(βz-c)√2βz+c and θ(t)=θ0(n)+h/√α'cosh-1(α'/r(t)+β'/√β'2-α'A)【1d3】とは【1d3a】and【1d3b】のことだ。【1d3a】-Z0-am(1,1)<Qm(2,1)<-Z0【1d3b】∃t0∈R;∃θ0∈R(Z);【1d3b1】and[∀t∈R;∀n∈Z;-t0≦t-2nt0≦0⇒【1d3b2】]and[∀t∈R;∀n∈Z;0≦t-2nt0≦t0⇒【1d3b3】]【1d3b1】t0=√α'/-αE+β/α√-αcos-1(-αβ'/A/√β2-αc)and
θ0(0)=0【1d3b2】∃z∈R;z=r(t)-Qm(2,1)/E and t=2nt0-1/α√αz2+2βz+c-β/α√-αcos-1(-αz-β/√β2-αc)and
θ(t)=θ0(n)-h/√α'cosh-1(α'/r(t)+β'/√β'2-α'A)【1d3b3】∃z∈R;z=r(t)-Qm(2,1)/E
and t=2nt0+1/α√αz2+2βz+c+β/α√-αcos-1(-αz-β/√β2-αc)and θ(t)=θ0(n)+h/√α'cosh-1(α'/r(t)+β'/√β'2-α'A)【1d4】とは【1d4a】and【1d4b】のことだ。【1d4a】-Z0<Qm(2,1)<-abZ0【1d4b】∃t0∈R;∃θ0∈R(Z);【1d4b1】and[∀t∈R;∀n∈Z;-t0≦t-2nt0≦0⇒【1d4b2】]and[∀t∈R;∀n∈Z;0≦t-2nt0≦t0⇒【1d4b3】]
|